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A radiattonal condttton compatible with a weakly dispersive governmg equatton for 
tsunami waves is developed for use at the open lateral boundaries of a limited-domain 
propagatton model A Boussmesq-type governmg equation for the Interior is adopted. The 
resulting open boundary conditton (OBC) 1s a modifted Sommerfeld condition, m which the 
effects of weak dtsperston, geometrtc spreadmg and shoalmg are allowed. The OBC IS applied 
along wave ray charactertsttcs whtch intersect the open boundary obhquely. The numerical 
implementatton employs Lagrange mterpolations in two dtmensions from informatton on a 
regular grad tn the mtertor region Test results mdtcate that the numerical boundary IS highly 
transparent to Incident waves m the absence of bottom topography. Weak Pispersion effects 
(Atry dtsperston. Pomcare disperston and nonlmear dispersion) are fatthfully reproduced m 
the test stmulations The effects of topography (reflectton, refraction, and diffractron), which 
are not included m the OBC, result m some contamination of the soluttons. However, the first 
few leading waves are free from serious error. Also the contamination due to topography near 
the open boundaries IS sporadic and does not produce a cumulatrve effect. The modified OBC 
ts shown to be a very sigmticant Improvement over the sample nondtsperstve Sommerfeld 
radiatton condttion. ( 1968 Academic Press. Inc 

1. INTRODUCTION 

For real-time prediction of a far-field tsunami signal by a numerical propagation 
model, accuracy and efficiency are important. To achieve reasonable efficiency, a 
limited-domain model with an open boundary condition (OBC) is often employed 
in studies of tsunami propagation (e.g., Hwang et al. [ 11; Brandsma et al. [2]; Kim 
[3]). An (ideal) OBC is a computational boundary which allows disturbances in 
the interior domain to be radiated without distortion or spurious reflection. Such 
boundary conditions are of fundamental importance in fluid dynamics, especially in 
the areas of oceanography and meteorology. 

Since the 1950’s OBCs have been studied by several authors including Orlanski 
[4], Camerlengo and O’Brien [S] and Chapman [6]. Most OBCs are based on 
the first-order Sommerfeld radiation condition 

4, + Cd, = 0, (1) 
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where subscripts denote partial differentiation, s the independent variable in the 
direction of the wave ray characteristics, C the celerity, and 4 is the water level 
anomaly or velocity. Different OBCs have different numerical prescriptions for the 
celerity. 

It will be shown that OBCs based on ( 1) are not sufficiently accurate for studying 
long-range tsunami propagation. In order to recover a reliable far-field tsunami 
signal, both the interior governing equation (IGE) and the OBC should allow for 
the modification of the tsunami wave. The modification factors are (1) energy scat- 
tering and concentration by geometry of the source and of the geoid, and bottom 
topography including reflection, refraction, and diffraction, (2) phase dispersion, 
considering both the vertical acceleration of the fluid and the rotation of the earth, 
(3) amplitude dispersion due to nonlinear effects. Unless these (possibly small) 
effects are properly resolved in an OBC, spurious reflection from the open boun- 
daries might contaminate the interior solution and the real modification of the 
tsunamis would be obscured. Emphasis is focused on the accurate resolution of the 
weak dispersion effects which can cause cumulative distortion of the wave signal for 
long-range propagation. 

The main interests in this study are as follows: 

(1) development of an OBC consistent with a two-dimensional, dispersive, 
nonlinear propagation model over an ocean of variable depth, 

(2) numerical implementation of the developed OBC, and 

(3) tests of the transparency of the OBC for a range of selected conditions. 

The model employed in this study, including the IGE, is that developed by Kim 
[3] and is briefly described in Section 2. The associated OBC is discussed in detail 
in Section 3. The results of numerical simulations for the selected tests appear in 
Section 4, followed by a summary and concluding remarks in Section 5. 

2. THE NUMERICAL MODEL 

Based on the Hamiltonian-action variational principle, the following Boussinesq- 
type continuum equation governing the evolution of the water level anomaly (9) 
can be derived: 

~-nV.(ghvs)= -~~+lv.(hV(h4,,))+tgv.(hV(a2/h)), (2) 
D E 

where the subscript t denotes partial differentiation with respect to time, g 
gravitational acceleration, f the Coriolis parameter, h water depth, V the two- 
dimensional de1 operator along a level surface (geoid). Approximations to the 
Hamiltonian action are made appropriate to kh 6 1 (long waves), ]Vh] 4 kh (mild 
bottom slope) and q//z 4 1 (small amplitude), where k is the typical wavenumber of 
the tsunami wave. 
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The primary balance for very small amplitude waves whose wavelength is of the 
order of 50 to 500 times the depth is with terms A and B. Such waves are essentially 
nondispersive. All the terms on the right-hand side of (2) represent dispersion 
effects. Term C accounts for the effect of the earth’s rotation; a balance of A, B, C 
being the linear Poincare equation appropriate to very long waves, for which 
Coriolis acceleration produces weak dispersion. For wavelengths of order 5 to 50 
times the depth (in which a significant portion of tsunami energy usually resides), 
the effect of vertical acceleration of the fluid can produce weak phase dispersion. 
Term D is a Boussinesq-type approximation for this effect. Finally, the effect of 
nonlinear (amplitude) dispersion is accounted for by term E. This particular form 
results from an approximation in the Hamiltonian formulation pertinent to waves 
propagating primarily in one direction. This is justifiable for the oceanic 
propagation phase of the tsunami problem, but represents an approximation near 
the source and in regions of strong reflection, where the disturbance can be more 
nearly a standing wave. The inclusion of amplitude dispersion can partially offset 
the phase dispersion effects, particularly for the leading waves of a tsunami wave 
group, well away from the source. 

Term D can be approximated by a fourth-order spatial operator by replacing )I~, 
in D by the first-order approximation given by a balance of A and B. This would 
allow (2) to be rendered in an explicit finite difference form. However, it was found 
by Kim [3] that the explicit form for this dispersive governing equation is severely 
restricted in the range of depths for which it can be applied. Relation (2) as it 
stands implies that the variable (4) being predicted is (combining A and D): 

Numerical implementation in this form requires inversion of the above two-dimen- 
sional elliptic equation at each time step to obtain 9 from 4 and (while potentially 
of good stability properties) is quite inefficient. 

The adopted numerical version of (2) is a compromise in which term D is split as 

where (,u, v) are coordinates indicating respectively the principal direction of 
propagation (source to receiver) and the transverse direction, while (V,, V,) are 
(p, r) components of V. if one then replaces qn by its approximation gV . (hVq) in 
the first term above, a semi-implicit form of (2) is achieved in which the term being 
predicted is 

whose numerical counterpart is easily inverted to obtain r] in terms of 4. The 
resulting adopted governing equation is then 

flu - fV,. . (hV,.wl,,)) +f2’1 

=gV’(kVrl)+~gV~(hV(q’/h))+fgV,‘(I2V,,(hV~(hV~))). (3) 
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Details of the numerical analog of the adopted governing equation will be found 
in Kim [S], along with an analysis of its stability properties. Since our present 
focus is on the OBC, these details are considered beyond the scope of this paper. 
We mention only that the rendition of all terms in (3) in finite difference form 
should have a truncation error comparable to that associated with the dispersion 
effects so that the latter is not masked by numerically induced dispersion. In a 
centered difference analog of (3), terms of order (LIx)~, or equivalently, order (LI~)~ 
are retained, where Ax and At are spatial and temporal resolutions of the grids. 
Without the nonlinear term, the resulting difference equation [3] has a dispersion 
relation accurate to 0(k4) compared with its continuum counterpart. 

3. THE OPEN BOUNDARY CONDITION 

A characteristic-type boundary condition is derived upon reducing the time 
derivative order of the IGE. For the systematic retention of the important terms in 
deriving an open boundary condition, (3) is nondimensionalized adopting the 
following scales: 

N,: typical amplitude of the tsunami wave, 
H: mean depth, 
L: typical length scale in the direction of the wave propagation, 
L/,/z: typical time scale of the tsunami wave, 
L,. = L/3: length scale associated with the variation of ‘1 in the transverse 

direction, 
L,,;L/(p: length scale associated with the variation of h or equivalently 

C( = Jgh). 

Since the variation of g in the transverse direction is much smaller than that in the 
principal direction, 9 is much less than unity. Also, cp is assumed to be a very small 
parameter (mild bottom slope). 

The nondimensionalization of (3) yields parameters E = N,/H, 6’ = (H/L)‘, 
and Q =.fL/,,@?, which are measures of the importance of nonlinear effects, 
phase dispersion, and the rotation of the earth, respectively. In the context of the 
Boussinesq-type governing equation, these parameters are much less than unity. 
Then to order E, 6*, Q*, q, 9’, and L+, (3) is nondimensionalized as 

(4) 
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where 

( 1 ) Cartesian coordinate system (x, I,), 

p = .II, \‘=I’, p=l 

(2) polar coordinate system (r, 0) 

P = r, \’ = 8, p=r 

(3) spherical polar coordinate system (0, 1, p), 

P = R,& v = RJ, p = sin e 

and R, is the radius of the Earth. The term of order 9~ governs the effect of refrac- 
tion due to bottom topography. The third term on the right of (4) represents the 
effects of wave spreading in the absence of bottom topography for a source having 
9 = F(p) only. The importance of this (geometric) spreading is measured by p,/p. In 
deriving an OBC, p,/p is considered small since the boundary is well away from the 
pole of the coordinate system. In a Cartesian coordinate system, geometric 
spreading does not occur. 

The primary (zeroth order) balance in (4) is given by 

rl,, = c’rl,p. (5) 

Since the term of order cp (associated with the variation of C) is neglected, (5) 
reduces to 

VI,= -cq,, (6) 

for waves propagating in the positive p direction. Equations (5) and (6) yield two 
relations 

d/dt = -C( a/s/l), 

(7) 

The lower limits of integration are found such that water level is undisturbed at 
(to, pO). Substitutions based on (7) introduce error of order E, J2, Q’, cp, G2, Lkp, p,/p 

(hereafter referred to as the first order) when applied to a generalized governing 
equation (4). The derivation of an open boundary condition is based on the claim 
that the error due to the use of (7) can be explained by the first-order terms in (4). 
In the following discussion, the use of (7) for the first-order terms will not be 
mentioned explicitly since the error is of order higher than the first. 
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By employing (7) on the right of (4) and then integrating the resulting equation 
with respect to t an OBC, aside from the coeffkients, is derived in the form 

v],= -c,c~~‘-c,cpc,,yI--c,cp-‘p,~-c~~z r/dt-C,EC-L~~, 
s 

The coefficients c,‘s are determined such that (8) is accurate up to first order. 
Differentiation of (8) with respect to t yields 

‘ltr = -c,cv,, -c2cpC,rl,--c,CP-‘Pl,‘lr-c,e2~--CS&C~’(~~~,), 

- c6B2c5?7ppp~ +c,92pP2c2q ,,,. +c,s~p-‘cc,J,. (9) 

Using (8), the right side of (9) can be restated in terms of spatial derivatives of ‘I. 
For example, q,, in the first term on the right is represented (neglecting higher 
order terms) as 

‘I it, = -‘,(Crl,,,,+cpC,,‘lr)-C2(PC,,~,,--(’,CP-’PrYl,’+C4e2C~~yl 

- cS&C -‘(4’l~,)~1-~(.662C5~/llr/l~-C,92~~2C~,,,-c~9~p-‘C,,~,,. (lo) 

Finally, (9) is rewritten as 

rl,~+(c,c,+c,)Q2rl=c:C2rl~l~l+(c:+2c,c2)~CC,,’lr 

+2c~c~c2P~‘P~~~~~+2c~c5E(~~~~)~~+2c~c662c6~~~~~~~ 

+(c,c,+c,)9’p~‘c2~ ,,,, +(c,c*+c,)S~p-‘cc,.q,,. (11) 

By matching terms in (11) and (4), the c,‘s are determined. The resulting boundary 
condition in dimensional form is given by 

+A h’CqwP,, +$ C-’ j- (C’q,,),.dp=O. 

In the absence of the earth’s rotation, (12) in a Cartesian coordinate system is 
essentially equivalent to Eq. (28) given by Kirby et al. [7] for waves propagating in 
one direction on a ray. In integrated form their equation is 

~,+Crl.+~C,rl+~~~,+~h2C~,~,,+~C~ C-‘(C2qy),,dx=0. (13) 

The difference is the form of the y-dependent refraction/diffraction term. For strictly 
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unidirectional propagation in constant depth both (12) and (13) reduce to the KdV 
equation. 

Figure 1 shows the dispersion characteristics of the IGE, the OBC, and the exact 
linear theory. The dispersion relation is obtained employing v] = exp(ikp - iwr) in 
the absence of nonlinearity, geometric spreading, and bottom topography, where o 

I 
I’ 

exact hear theory,,’ 

kh 

Typical Period (min) 
m 
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FIG. I Dtspersron charactertsttcs of the exact hnear theory, the hnearized version of the intertor 
governing equation, and the lateral boundary conditton: (a) (I) vs kh; (b) log/log plot of (I - C,/CO) vs 
h-h. where C,( =&,‘8k) and C,,( =m/k) are the group speed and the phase speed, respecttvely, and 
F=fv;@$. The three domams (from left to right) m the lower figure indicate ranges for the dominance 
of Poutcare, Boussmesq (weak Airy), and strong Arry disperston, respectively. The present model is 
apphcable to the range 0.5 x 10 -’ < kh < 0.5 
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is the frequence. In particular, (12) is differentiated with respect to time to eliminate 
contribution from the lower limit of integration, which is unimportant for the 
discussion of the dispersion characteristics. For normal period range of tsunamis 
(20 min to 2 h), these three dispersion curves are almost coincident. The combined 
effect of vertical acceleration and the rotation of the earth causes the group speed to 
have its maximum value at about 50 min period as depicted by Royer and Reid 
[S]. Without the rotation of the earth, maximum group speed occurs at k = 0. 

Multiplying (12) by p’%Z “I, an open boundary condition is obtained in a 
characteristic form as 

along the path dpldt = C, i.e., 

where i = qpL:‘C ‘,2. Factors P’,‘~ and C “’ account for the effects of geometric 
spreading and shoaling, respectively. The terms inside the braces represent 
the effects of dispersion and of diffraction/refraction. Without such effects, [ is 
conserved following any characteristic. 

In deriving a discrete form of the OBC, distinction should be made between the 
two types of coordinate systems adopted in this study-the base coordinate system 
and the wave coordinate system. At the outset, it is emphasized that the domain of 
the model is spatially limited by open (computational) boundaries (see Fig. 3). The 
base coordinate system defines the configuration of a limited domain. The wave 
coordinate system is defined in regard to the geometry of the source. These two 
types of coordinate systems need not be same. For example, consider the 
propagation of waves on a plane geoid by an initial surface displacement of axially 
symmetric form. Then the wave coordinate system is a polar system with the pole at 
the center of the initial displacement. The wave coordinate system is suitable for the 
boundary condition (14) which is solved following the characteristic ray path. At 
the receiver site, it is desirable to have as dense information as possible. In this 
respect, a Cartesian system is a proper choice for the base coordinate system. Then 
the coordinates (p, v) in (3) are redefined as (x, v), where y = 0 is a line connecting 
the source and the receiver. Open lateral boundaries are lines along which 
J’ = constant. The duality of the coordinate system requires an interpolation in 
solving (14). In the following, the effects of refraction and diffraction in the OBC 
are neglected. While such effects are usually small, the error in evaluating the last 
term of (14) is large in the context of the present model. The difficulty arises 
primarily due to the fact that the precision of estimates of the derivatives of q 
transverse to a wave ray near the open boundary is much poorer than that of the 
derivatives along the ray and this can destabilize the computation. 

Equation (14) without the refraction/diffraction term, can be written in a 
discrete form using upstream differencing (see Fig. 2). That is, 
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FIG. 2. SchematIc ligures depxting the interpolation lattice, nodal points ( l ), mterpolatlon pomts 
(numbered 0 to 4 or designated by .4 and B) and the assumed characteristtc ray path (geodesic line 
joining the source and the point ‘4). (a) 4 x4 Lagrange interpolation, (b) 3 x 3 Lagrange interpolation. 

Y/;+‘= f-f (.fAt)2(q0+29’+ “. +2rfp’ 
[ 

+ f) -; 4rl”rl”) 

-; h’ 
{ 

A(/“) -; A)(/“) >I h3Cs/P4c.4)‘;2~ B (16) 

where A is the point at which the boundary condition is sought, B an interpolation 
point, n time step, 1 Laplacian of 4, y the Courant number (m At/Dp), D,u grid 
size in the p direction, z scaled depth (h/H), and A is a difference operator such that 

A31, = I, - 21, + 21, - I,. 
(17) 

So there are actually five interpolation points designated by indices 0 to 4. 
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Upstream differencing is conducted along the (geodesic) line joining the source 
and the point A. Without bottom topography, this characteristic path is a wave ray 
for waves propagating from the source in one direction. With bathymetry, this line 
is no longer exactly a ray. The determination of the actual ray path is difftcult and 
is not attempted in the present model; we recognize this as a potential source of 
error. The error is in the assumed angle at which the ray intersects the boundary. 
The distance between A and B is computed by the local celerity C for given At. The 
time integral term in (14) is evaluated using the trapezoidal rule. The lower limit 
of integration is set to zero. At this time, the water level anomaly near the open 
boundary is zero. The v~~,~~*~,, term in (14) is approximated by I,,* and 

I,JDp,)= Al- ,&A?+ O(Dp,)‘, (18) 

where the subscript * temporarily denotes variables pertaining to the wave coor- 
dinate system. According to the previous scale analysis, the addition of I]~.,,,,~,, 
( = 4. - vp*p,p* ) does not alter the boundary condition to first order. Using I 
instead of FIN, I’ is a matter of convenience for the computation. 

Each term* in (16) is evaluated by a 4 x 4 Lagrange interpolator. As shown in 
Fig. 2a, extra points outside the lateral boundary are required for this interpolation. 
The motivation for such an interpolator is to reduce the error and to stabilize the 
scheme by placing the interpolation point B near the center of the lattice. In order 
to compute q’s and I’s outside the boundary, I’s and 1”s (biharmonic) along the 
boundary need to be known. In other words, if I is known along the boundary, ~1 

outside the boundary can be computed using the relation 

rl,.,+ I =~,,,(~102-~,,,~,-il,+I.,-~r~ ,.,+4v,.,* (19) 

where (i, j) are coordinates in the grid system. Radiation equations for 1 and 1’ are 
derived by taking spatial derivatives of (14) and neglecting higher order terms (than 
the truncation error of (14)). These equations are solved using 4 x 4 and 3 x 3 
Lagrange interpolators, respectively (Fig. 2b). 

Numerical damping is inherent for this interpolational scheme. In order to assure 
that the open boundaries are as transparent as possible, the dispersion properties of 
(16) and the numerical counterpart of (3) should be matched closely. Accordingly, 
a small damping is allowed in the interior region in the form 

Y]*=I]+C,d:dtrl+c2d~rl+c,d~rl, (20) 

where q* is the filtered solution with c, =0.076, c2 =O, and c3 = 0.0096. The 
damping coefficients were determined by a numerical experiment designed to 
optimize the consistency between the dispersion properties of the OBC and the IGE 
in a Cartesian coordinate system. This damping is a property of the developed 
model and is different from a real (viscous) damping. Distortion of the solution due 
to this damping is negligible for the leading waves of the simulated tsunami, as will 
be shown in the next section. 
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4. NUMERICAL SIMULATION TESTS 
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a. Itltroductiotz 

Transparency of the developed OBC is tested under selected conditions for which 
different effects can be examined individually. For all tests, the source is taken as an 
initially static surface displacement which has an axially symmetric Gaussian form 

iy = q. exp( - r*/20*), (21) 

where I’ is the radial distance from the source and u is a measure of the lateral scale 
of the Gaussian mound. The line joining the center of the Gaussian mound and the 
receiver is the /c-axis for the computational domain. The initial amplitude q0 is 100 
units, the unit being arbitrary. The Courant number is unity and the grid size Dp is 
twice the mean depth H (=5 km). 

Figure 3 shows the schematic diagram of a limited-domain model. While required 
bathymetry is stored in a suitably large two-dimensional grid including the source 
and the receiver. actual computations are carried out over a small subset domain 
(computational subdomain). The computational subdomain includes the wave front 
and translates toward the receiver at speed &?, radiating a portion of the wave 
energy through the lateral and trailing open boundaries, thus accounting for lateral 
spreading of energy by geometrical dispersion and longitudinal spreading by phase 
and amplitude dispersions (divergent wave rays centered at the source). At the 
leading boundary of the computational subdomain the water level is assumed to be 
undisturbed (q = 0). This condition is satisfied by placing the initial surface 
displacement (21) at an appreciable distance (60 Dp in this study) away from the 
leading boundary. Since the computational subdomain moves at the mean speed of 
the front, leading waves cannot overtake the leading boundary on the moving 
domain. Spurious reflection from the trailing open boundary does not significantly 
contaminate the solution since the computational subdomain moves at a faster 
speed than the (short) waves reflected from the trailing boundary. If the lateral 

(men) lateral boundarv 

RECEIVER 

0 

(open) lateral boundary 

FIG. 3. Schemattc grad domain and computational subdomam. The computattonal subdomam 
mittally includes the source (initial surface displacement) and translates toward the receiver wrth the 
wave front Waves are radiated through the lateral and trading open boundarres of the computational 
subdomam. The drrectton of radtation is determined by the assumed characteristic ray path as shown in 
the figure. The hne joinmg the source and the receiver is the center (p-axis) of the domain. 
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NO DAMPING 
CONSTANT DEPTH 

1 CONSTANT DEPTH 

% 
8 0 

F 

-1 

-2 
Cl 100 

FIG. 3. Water level anomaly along the p-axis (geodestc line jommg the source and the receiver) tn 
the presence of the Airy dispersion effects: (a) analytic r, I model, (b) numerical X, y, r model, 
(c) numertcal I, I model. The inrtral surface displacement is posittoned at 140 on the abscissa. The 
assumed geoid is a plane. The one-dimensional model adopts a polar coordinate system with the pole at 
the center of the imtlal surface displacement. The limited-domatn model employs a Cartesian coordinate 
system. The height scale IS m present of the initial surface height (which is 100 units for all tests). 
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TIME : 1000 
SIGMA = 3 

F:O 
EPS = 0 
NO DAMPING 
CONSTANT DEPTH 

I 

MAX SCALE = 0 9639 
MIN SCALE =-1 3196 

I 
100 

GRID 

Fig. 4 (continued) 

boundaries are not transparent, however, spurious reflection may contaminate the 
leading waves. Thus, the focus here is to examine the transparency of the lateral 
boundaries where (16) is employed. 

The following figures are plots of r] along the center (hereafter the p-axis) of the 
computational subdomain. Bear in mind that the computational subdomain moves 
at the mean speed of the wave front. The length (in the p direction) of the 
computational subdomain is 200 grid intervals. The initial Gaussian mound was 
centered at 140 on the abscissa at t =O. In the figures, SCALE represents the 
maximum and the minimum amplitudes of the waves (the original height of the 
Gaussian mound being 100 units). The scaled parameters TIME, SIGMA, F, and 
EPS are defined by 

TIME = r/At (time), 

SIGMA = a/Dp (lateral scale of the source), 

F = ,f V!‘%& (Coriolis parameter), 
(22) 

EPS = No/H (nonlinearity parameter). 

For simulations with a limited-domain model, SIGMA is set to 3. With larger 
values of SIGMA, the mode1 is expected to perform better because only a small 
portion of energy resides in the short-wavelength regime. Note in particular that 
spurious reflection from the open boundaries is mainly due to short waves as 
implied in the dispersion curves (Figs. la and b). Since all the problems presented 
are symmetric about the p-axis, a symmetry condition is employed along the p-axis. 
Unless otherwise stated, the lateral width of the domain is 20 grid intervals about 
the p-axis. 
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b. Test Results with Dispersion .Efects in the Absence of Bottom Topography* 

The primary interest here is to examine the transparency of the OBC to disper- 
sive wave trains. The effects of reflection, refraction, and diffraction are suppressed 
by assuming a flat basin. The tests consist mainly of comparing solutions of the 
limited-domain model (with open boundaries) with analytic solutions and/or 
solutions of a one-dimensional (1 D) model selected by the geometry of the source 
and of the geoid. For example, if the initial surface displacement is axially sym- 
metric on a plane geoid in the absence of bottom topography, the problem is essen- 
tially one-dimensional if a polar coordinate system is adopted with the pole at the 
center of the initial displacement. The indeterminacy at the pole when using a 1 D 
polar model is resolved utilizing L’Hospital’s rule. The domain of a 1 D model 
extends from the pole to infinity without the need of any boundary condition except 
for the symmetry condition at the pole. Aside from the effects of an OBC (and 
possibly the truncation error and the indeterminacy at the pole), the limited- 
domain model and the 1 D model chosen as above are equivalent since both models 
are based on the same governing equation (3). For the linear, constant depth case, 
analytic solutions exist for testing the overall numerical model performance. The 
analytic solutions require a numerical evaluation of the classical integral solution 
(of Bessel type) to a CauchyyPoisson problem [3, 91. 

The comparison between Figs. 4a and b indicates that the limited-domain model 
with open radiational boundaries overestimates the maximum 1~1 by about 6 % in 
the absence of the earth’s rotation or the nonlinear effects. Otherwise, the dispersive 
nature of the solution is produced quite faithfully. This represents a very stringent 
test of the accuracy of the time marching model with radiational lateral boundaries. 
Note in particular that for H = 5 km, the total propagation distance is 10,000 km. 
The difference here is a measure of spurious reflection from the open lateral boun- 
daries and, to a lesser extent, the difference in dispersion characteristics of the 
analytic and numerical renditions of the waves. The difference between Fig. 4a and 
c is primarily a measure of the difference in dispersion characteristics between the 
numerical model and the analytic solution. 

The comparison between Figs. 5a and b indicates that Poincare dispersion effects 
are accurately incorporated in the OBC. For the relatively narrow initial 
displacement adopted in this study, the effects of the earth’s rotation are not 
pronounced as the difference between Figs. 4a and 5a shows. As the initial 
displacement becomes wider (as the wavenumber spectrum becomes narrower) the 
earth’s rotation becomes more important, which is implied in the dispersion 
characteristics (Fig. 1). Table I suggests the possible importance of the Poincare 
dispersion for large scale tsunami events at least for long propagation distances. 

The comparison between Figs. 6a and b demonstrates that the effects of non- 
linear dispersion are faitfully resolved in the OBC. As shown by the profiles given in 
Figs. 4a and 6a, the nonlinearity incorporated in the present model can significantly 
offset the phase dispersion and allow greater amplitude of the leading wave 
compared with the linear case. The decay in amplitude of the leading wave versus 
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FIG. 5. Same as Fg. 4 except that the effects of the rotation of the earth are added: (a) analytic r. r 
model, (b) numerical -1, x, r model. The scaled value of the Corlolis parameter (F= 0.002) 1s tantamount 
to f= I x 10 -j,‘s for the mean depth of 4 km. 
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TABLE I 

Effect of the Earth’s Rotatlon for Selected Lateral Scales (SIGMA) of 
the Source at Time Step (TIME) 1000 (linear case) 

SIGMA F=O. F = 0.002 Differences 

3 ‘4 0.95 
B 1.30 
H 2.25 

IO A 3.60 
B 1.97 
H 5.57 

I5 A 4.53 
B 2.19 
H 6.12 

0.91 -0.04 
1.36 0.06 
2.27 0.02 

3.32 -0.28 
2.41 0.44 
5.73 0.16 

4.02 -0.51 
3.03 0.84 
7.05 0.33 

Note .4 = leadmg positive peak 1; B = absolute value of the next 
peak ‘1: H = range. 

time step for different values of the nonlinearity parameter (EPS) is summarized in 
Fig. 7 for a source with the lateral scale (SIGMA) 3. While the nonlinear 
parameterization in the model may represent an approximation to the true effect, 
the major concern here is to examine the transparency of the OBC in the context of 
the assumed model physics. 

c. Test of the Nondispersive Sommerfeld Condition 

Test results with dispersion effects show that the dispersive OBC is accurate in 
the absence of bottom topography. The question remains whether or not the simple 
Sommerfeld condition ( 1) would perform equally well. The numerical version of (1) 
employed in this study is simply (16) without dispersion effects. Nonlinearity and 
the rotation of the earth are also suppressed in the governing equation. Figure 8 
gives the result of a test conducted under the same conditions yielding Fig. 4b 
but with the nondispersive Sommerfeld condition on the open boundaries. 
Contamination due to spurious reflection from the open boundaries dominates the 
numerical solution. Without the added effects of damping, contamination is much 
worse (not shown here). This test confirms that matching the dispersion charac- 
teristics of the OBC with those of the governing equation is highly important for 
long-range propagation. While dispersion effects contained in the OBC may be 
small, the error produced by their omission is cumulative. 

d. Test Results with Bottom Topograph>* 

The OBC can accomodate waves propagating only in one direction because the 
radiational boundary condition is essentially a reduced version of the IGE. Thus 
the OBC makes no allowance for true reflection by topography near the boundary. 
Also, since the adopted radiation condition in this study includes no effect of 
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FIG. 8. Water level anomaly employmg a numerical x, J, I model as in Fig. 4b with an open boun. 
dary condltlon based on the first-order Sommerfeld equation. The effects of dampmg are Included. 
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refraction/diffraction, topography inside the domain can contribute to spurious 
reflection from the open boundaries by changing the angle of radiation. 

In order to examine the degree of contamination by true reflections from the 
lateral boundaries, utilization has been made of the following (scaled) topography: 

z(r) = 1 - :0 exp( -(r - r,)‘/2&). (23) 

Here the constant Y, is the distance from the source to the center of the topographic 
feature. The effect of refraction is excluded by employing this concentric form of 
bottom topography with respect to the center of the source. The scaled amplitude 
z0 is set to 0.25, CJ, = 3 Dp, and r= = 160 Dp. 

Comparison of Figs. 9a and b shows that the reflected waves in the trailing 
portion of the record are contaminated. Also, the amplitudes of the intermediate 
waves are modified. This is an expected result in view of the reduction in order. It 
should be emphasized that radiation conditions inherently produce spurious 
reflections when true reflections exist. The amplitude of the leading wave, however, 
is relatively free from contamination. 

The effects of error in the assumed orientation of wave rays near the boundary, 
caused by refraction, are examined using an isolated topographic feature of 
Gaussian form 

:(r*) = 1 -z. exp( - ri/20;), (24) 

where r* is the distance relative to the center of this feature. The center is on the 
p-axis and is 160 Dp away from the source. As before, z0 = 0.25, rr, = 3 Dp. Since a 
1 D solution no longer is available, the comparison is between the two solutions of 
the limited-domain model; one is computed over a domain with larger lateral 
dimension than the other (50 grid intervals compared to 20 grid intervals about the 
kc-axis). Based on travel time considerations, the solution computed over a larger 
domain is influenced less by spurious reflections from the open boundaries at least 
in the leading and middle portions of the wave record. The profiles in Figs. 10a and 
b show that the effects of refraction are relatively small. Note that there is no true 
reflection from the open boundaries since the topographic feature is purposely 
contined to the interior region. 

5. SUMMARY AND CONCLUDING REMARKS 

The aim of this investigation was to implement an open boundary condition for 
weakly dispersive tsunami waves. The developed OBC was tested for transparency 
under selected conditions which focuses on its sensitivity to various sources of error. 
Testing of the OBC could be carried out for different initial displacements, 
topographic features, etc. The degree of contamination could also be examined 
using different size domains. The tests employed in this study are not intended to be 
exhaustive, but rather to provide a demonstration that the incorporation of 
dispersion effects in the OBC can be important. 
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In implementing the discrete version of the OBC, it is vital to match the disper- 
sion characteristics of the boundary condition with those of the discrete version of 
the IGE. In this study, small damping was allowed in the interior domain in the 
fine tuning of this matching. The parameterization of the damping in this study was 
determined based on a numerical experiment. Such matching is necessary to 
prevent numerical (spurious) dispersion from obscuring true dispersion effects and 
is a key to the transparency of the OBC. 

It is to be stressed that an accurate OBC is essential for a limited-domain 
tsunami model, especially when the propagation distance (or time) is large. For a 
long-range tsunami propagation, dispersion effects may produce significant 
modification of the waves. In the test, the dispersion effects-vertical acceleration, 
rotation of the Earth, and nonlinear steepening-are faithfully reproduced in the 
absence of bottom topography. The degree of error by such effects is less than 6 % 
in terms of the maximum amplitude of the waves after 1000 time steps (Z 10 h). 

The neglected effects of topography-true reflection, refraction and diffrac- 
tion-in the OBC produce spurious reflections from the open boundaries, which 
contaminate the interior solution primarily in the middle and the trailing portions 
of the wave record. The leading few waves are relatively free from distortion. Since 
one of the purposes of using a limited-domain model with open boundary condition 
is to determine the first few leading waves without significant error, it is expected 
that realistic topography would not impose serious problems. Also it should be 
emphasized that contamination due to the neglected effects of topography in the 
OBC is rather sporadic while that due to improper handling of the dispersion 
effects is cumulative throughout the simulation. 
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